.
Mostrando entradas con la etiqueta herencia. Mostrar todas las entradas
Mostrando entradas con la etiqueta herencia. Mostrar todas las entradas

miércoles, 4 de noviembre de 2009

Paul Kammerer (1880-1926): El falso fraude y descubrimiento fundacional de la epigenética








El diario ABC publica hoy en su versión digital una noticia titulada “Los cinco mayores fraudes científicos que llegamos a creernos”. En ella se refiere al hombre de Piltdown, a los vestigios arqueológicos de Tsukidate, al fósil compuesto de Archaeoraptor liaoningensis, a experimentos sobre clonación humana en la Universidad de Seúl y ..............a los experimentos de Paul Kammerer (1880-1926).


Como viene siendo corriente en el periodismo científico, marcado habitualmente con lo tintes amarillos del sensacionalismo, la noticia contiene un grave error. Afortunadamente, esta vez la ciencia está de enhorabuena y el error le favorece.

De los cinco indicados, uno no es un fraude. Se trata, pues de un falso fraude. No sólamente eso, sino que podría tratarse además de uno de los acontecimientos más notables de la biología del siglo XX que, curiosamente (y esto le otorga mayor notoriedad) habría pasado por fraude.........


Alexander Vargas, un biólogo chileno experto en evolución y desarrollo, ha analizado recientemente los trabajos de Kammerer a la luz de los resultados y puntos de vista de la epigenética. En un reciente artículo que el propio autor comenta en el blog Nucleodecenio y que analizaremos en más detalle en otra ocasión, Vargas indica que los experimentos de Kammerer en Alytes, de impecable ejecución, lejos de contener ningún comportamiento fraudulento, podrían
representar la fundación de la epigenética, apuntando mecanismos de herencia de caracteres adquiridos,……¿les suena? Sí. Lamarckismo puro..........



Imagen de Paul Kammerer tomada de NNDB









Blogalaxia: ~ Technorati: ~ AgregaX:

jueves, 27 de diciembre de 2007

Herencia de caracteres adquiridos: Algunos casos ligeramente más complejos en plantas y su importancia.


La imagen procede del artículo titulado Pathogen stress increases somatic recombination frequency in Arabidopsis, en el cual Lucht et al (2002) muestran que un factor de estrés biótico (el ataque del patógeno Peronospora parasitica) estimula la recombinación somática en Arabidopsis. La recombinación somática es una respuesta general al estrés en plantas que consiste en la generación de nuevas secuencias genómicas heredables obtenidas mediante la recombinación de otras anteriores.

En su artículo titulado Transgeneration memory of stress in plants, Moliner et al (2006), muestran como en plantas de Arabidopsis thaliana tratadas con radiación ultravioleta-C o flagelina, aumenta la recombinación homóloga de un gen introducido y cómo dicha recombinación se mantiene en subsiguientes generaciones. El aumento en el estado de hiper-recombinación en generaciones siguientes es independiente de la presencia del alelo transgénico. Los autores concluyen que determinados factores ambientales conducen a un aumento en la flexibilidad genómica incluso en sucesivas generaciones (no tratadas) y así puede aumentar el potencial de adaptación.

En ambos casos se trata de procesos semejantes. Ambos se relacionan con los trabajos de Barbara McClintock, cuya lectura del premio Nobel en Diciembre de 1983 se tituló The Significance of Responses of the Genome to Challenge. En respuesta a situaciones de estrés, el genoma se modifica. Según McClintock:

It is the purpose of this discussion to consider some observations from my early studies that revealed programmed responses to threats that are initiated within the genome itself, as well as others similarly initiated, that lead to new and irreversible genomic modifications. These latter responses, now known to occur in many organisms, are significant for appreciating how a genome may reorganize itself when faced with a difficulty for which it is unprepared.

Conditions known to provoke such responses are many.



En su lectura del Nobel, Barbara McClintock estaba literalmente indicando el camino. El camino de la biología pasa necesariamente por la herencia de caracteres adquiridos


Referencias

Lucht JM, Mauch-Mani, Steiner H-Y, Metraux J-P, Ryals J and Hohn B. 2002. Nature Genetics 30, 311 – 314.

McClintock, B .1983. The Significance of Responses of the Genome to Challenge. Nobel Lecture.

Moliner J, Ries G, Zipfel C and Hohn B. 2006. Transgeneration memory of stress in plants. Nature 442: 1046-1049.



Blogalaxia: ~ Technorati: ~ AgregaX:

miércoles, 26 de diciembre de 2007

Herencia de caracteres adquiridos: Ejemplos sencillos en plantas


La imagen muestra el ápice de la raíz de una planta de Arabidopsis thaliana en la que la proteína fluorescente verde (GFP) de una medusa se ha asociado con una proteina de la pared celular.
Cientos (miles) de líneas de laboratorio expresan de manera semejante a lo que vemos en esta imagen, la proteína fluorescente verde (GFP) en distintos tejidos o estructuras. El protocolo para introducir el gen que codifica para la proteina fluorescente verde en el genoma de una planta, implica normalmente, como en general la mayoría de protocolos para introducir genes en plantas, la transformación con vectores derivados del plásmido Ti (tumor inducens) de Agrobacterium tumefaciens.
Tomemos como ejemplo una de tantas líneas de Arabidopsis thaliana, tal como esta línea de la imagen, llamada Lt16b y obtenida por Cutler et al. (2000), que expresa GFP en sus paredes celulares. Hace unos cuarenta años ninguna planta expresaba GFP, que, como digo es una proteína de una medusa. Colocar la secuencia codificante de la GFP de la medusa en un vector derivado de Agrobacterium y hacer que dicha secuencia codificante se integre en el cromosoma de la planta es un protocolo que se realiza hoy en multitud de laboratorios. Las plantas, que no poseen GFP, mediante este protocolo adquieren, tanto su secuencia codificante como la capacidad de producir la proteína, asociada a fragmentos de proteínas originales de la planta o bien producida bajo el control de promotores vegetales. La característica se hereda. Lo mismo que se heredan los caracteres que mediante ingeniería genética se introducen en ratones o en otras plantas y animales.
No hay duda hoy de que algunos caracteres adquiridos se heredan. El genio de Lamarck gana esta partida, como el de Geoffroy Saint Hilaire también acabó ganando la suya. Después de ciento cincuenta años en el olvido se demuestra que los animales de grupos distintos siguen pautas similares en su desarrollo y que, como decía Geofroy, la naturaleza se repite.


Y es que tanto Lamarck como Geoffroy pensaban más allá de su tiempo.
Referencia
Cutler SR , Ehrhardt DW , Griffitts JS , Somerville CR (2000). Random GFP::cDNA fusions enable visualization of Arabidopsis subcellular structures at a high frequency. Proceedings of the National Academy of Sciences 97: 3718-3723.

miércoles, 19 de diciembre de 2007

Herencia de caracteres adquiridos: Ejemplos en bacterias



Imagen: Moleculas de plásmido individuales al microscopio electrónico (imagen tomada de la Universidad de Cambridge).


Mediante la transferencia de plásmidos (fragmentos de DNA extracromosómico), las bacterias adquieren con rapidez caracteres que no poseían. Muchos plásmidos contienen genes de resistencia a antibióticos o de utilidad en la degradación de distintas moléculas, que pueden ser metabolitos de las plantas o hidrocarburos (derivados del petróleo). Pero concentrémonos en la resistencia a antibióticos.

Una bacteria sensible a un antibiótico adquiere mediante conjugación un plásmido que le confiere la resistencia y a partir de ahí ya puede transmitir dicha resistencia a los descendientes, quienes la heredarán. Un ejemplo claro, sencillo e indiscutible de herencia de caracteres adquiridos.

Determinadas bacterias producen nódulos que fijan el nitrógeno atmosférico en las raíces de las leguminosas y de otras plantas. Muchos de los genes que codifican para la nodulación y la fijación del nitrógeno están contenidos en plásmidos y la transferencia de plásmidos entre distintas cepas bacterianas es algo comprobado habitualmente en el laboratorio.

Se entiende por transferencia génica horizontal (HGT) a la transferencia de genes entre organismos que no ocurre por la vía reproductiva habitual (vertical). La transferencia génica horizontal está comprobada hoy en muchos casos. Pero,..¡Atención!: La transferencia génica horizontal no solamente ocurre entre bacterias o entre especies de bacterias relacionadas entre sí. Plásmidos o fragmentos de ellos pueden ser transferidos desde la bacteria Agrobacterium tumefaciens a las plantas. Este tipo de transmisión de material hereditario nos proporciona otro magnífico ejemplo que hoy demuestra la existencia comprobada de herencia de caracteres adquiridos.


Blogalaxia: ~ Technorati: ~ AgregaX:

jueves, 13 de diciembre de 2007

El protocolo de la genética y el dogma de la mutación espontánea IV y de momento sin conclusión final



Es importante darse cuenta de que para la genética el entorno habitual, el medio de vida de animales y plantas es el laboratorio.

Para ambos procedimientos que describíamos en el protocolo de la genética, genética directa y genética reversa, los organismos (animales, plantas, algas, hongos, bacterias,….) han de ser mantenidos en condiciones de laboratorio por generaciones. Las bacterias, hongos, plantas, animales,…objeto de estudio de la genética se cultivan en el laboratorio y se reproducen en las condiciones impuestas por la vida en el laboratorio. El valor de los estudios de la bioquímica y de la genética es limitado, ni más ni menos que, en la medida en que las condiciones de laboratorio afectan a propiedades bioquímicas o genéticas de los organismos.

El genético, metido en el laboratorio con sus microorganismos, plantas o animales, olvida con facilidad la naturaleza original de sus huéspedes y cuán diferentes son las condiciones de vida en el laboratorio si se comparan con aquellas en las que los antepasados de nuestros organismos estaban acostumbrados a vivir. Surgen así listas interminables de preguntas sencillas que, no solamente son difíciles de responder, sino que también son difíciles de plantear, como por ejemplo:


Pregunta número 1: ¿Cuánto se parece la cepa de Eschericha Coli K-12 habitual en el laboratorio a cualquier bacteria del intestino?

Sub-pregunta: ¿Existen regiones genómicas que cambian con el cultivo?

Una bacteria del intestino permanece como una entidad de ficción si no procedemos a su cultivo. Si lo hacemos, ya no es una bacteria del intestino.


Pregunta número 2: En un experimento de mutagénesis: ¿Qué significado tiene el agente mutagénico para el organismo en cuestión?.

Sub-preguntas: ¿Es igual emplear para mutagénesis de Escherichia coli K-12 o de cualquier otro organismo un agente químico u otro?. ¿Se obtienen los mismos mutantes en la misma proporción con diferentes agentes?.

Pregunta número 3: ¿Existen regiones del genoma particularmente expuestas o protegidas a la acción de agentes mutagénicos?. Si es así, que no lo sabemos. ¿Tienen algo que ver estas regiones con las que define la sub-pregunta número 1?


Pregunta número 4 (añadida a la pregunta número 3 y en relación con la número 1): ¿Es posible que determinadas condiciones de vida resulten en la exposición de determinadas regiones del genoma de manera preferencial a la mutagénesis?. Seguro que un neo-darwinista respondería que no, pero seguro que sin argumentos suficientes.



Como veíamos en las entradas anteriores, el análisis de la literatura en relación con la mutación es extremadamente complejo y requiere una aproximación cautelosa. De ninguna manera, porque el resultado de algún experimento apunte en una dirección deberemos concluir que siempre las cosas ocurren en esa dirección. Lo mismo que la imposibilidad de la herencia de caracteres adquiridos, la mutación espontánea es más un dogma que una realidad demostrada científicamente.


Blogalaxia: ~ Technorati: ~ AgregaX:

lunes, 10 de diciembre de 2007

El protocolo de la genética y el dogma de la mutación espontánea II


En las poblaciones naturales los individuos (plantas y animales) son heterocigotos para muchos genes (se representa por ejemplo Aa) y el fenotipo correspondiente a sus variantes recesivas en homocigosis (aa), que rara vez aparecería en la naturaleza, puede aparecer muy rápidamente en el laboratorio porque al estar implicados pocos individuos, en los cruzamientos de laboratorio se favorece la endogamia y la homocigosis. Éste es sólo un ejemplo de algo que ocurre en el laboratorio y que no ocurre con la misma frecuencia en la naturaleza, pero no hace falta pensar mucho ni buscar muchos ejemplos para darse cuenta de que la vida en el laboratorio es bien diferente de la vida fuera del mismo. Las conclusiones de experimentos deben ser miradas con lupa y discutidas con la vista puesta en las enormes diferencias que hay entre el laboratorio y el medio natural antes de establecer dogmas que puedan llevar a situaciones de error, a veces de difícil solución.

Si existen variantes alélicas en un mismo gen (A ó a) es, porque en algún momento ha habido mutaciones. La mutación es fuente de variación y, ha de ocurrir en la naturaleza….. Pensemos que podría terminar la frase diciendo espontáneamente, pero no lo haré. No lo haré a sabiendas de que en la naturaleza las cosas no suelen ocurrir espontáneamente y tampoco por error; dicho de otro modo: a ojos del científico, en la naturaleza todo puede tener una explicación. Renunciar a dicha explicación es renunciar a mirar desde la perspectiva científica.

Algunos factores físicos (radiación ionizante) y una gran variedad de agentes químicos (gas mostaza, etilmetanosulfonato, nitrosoguanidina,…..) pueden producir mutaciones, es decir cambios en el material hereditario. Herman Joseph Muller (1890-1967) en los años -20 del pasado siglo mostró que los Rayos X producían en el laboratorio versiones alteradas (alelos) de los genes que intervienen en los caracteres y en los procesos de desarrollo. La posibilidad de producir mutaciones en el laboratorio abrió la puerta a la posibilidad de utilizar la genética como herramienta para el estudio de cualquier proceso biológico. Ya no era necesario partir de una característica precisa para estudiar su herencia, porque podrían obtenerse variantes alteradas para cualquier proceso de nuestra elección en el laboratorio. Por ejemplo, podría ocurrir que mediante tratamientos con etilmetanosulfonato o con rayos X surgiesen moscas de ojos rojos, una característica que puede estar codificada por variantes alélicas presentes en la naturaleza. La mutagénesis, es decir la inducción artificial de mutantes pasó a ser una herramienta esencial para la genética. Antes de la mutagénesis se podía estudiar la herencia de determinados caracteres, pero mediante la mutagénesis es posible el análisis genético de procesos vitales. La genética comenzaba así a perder su objetivo inicial (estudio de la herencia) y a diluirse en la Biología.

Tenemos así mutaciones inducidas en el laboratorio que son una herramienta fundamental de la genética. Como corolario, casi involuntariamente surge denominar a las mutaciones que no son inducidas en el laboratorio,... ¿Cómo?.... mutaciones……….¡exacto!, espontáneas. Nos encontramos ante un juego de palabras que encierra una trampa. Normalmente llamamos a lo que no es inducido, espontáneo, pero en este caso nos equivocamos porque aquí no se trata de nombrar a lo contrario de inducido sino a lo contrario de inducido en el laboratorio. La mutación espontánea viene así a ocupar el lugar de la mutación "silvestre", "natural" o "no- inducida artificialmente". Un lugar de preferencia para un proceso cuya característica principal (espontaneidad) estaba por demostrar.......

El análisis de los mutantes sirve para demostrar la implicación de determinadas moléculas, genes o proteínas en procesos biológicos. La genética directa, parte así paradójicamente de la interrupción del proceso como método para identificar los genes implicados. Se aplicó a bacterias, hongos, protozoos, algas, plantas y animales. Por el contrario, la genética reversa es posterior y parte de los genes clonados para identificar los procesos o reacciones metabólicas en los que están involucrados. Curiosa paradoja de la genética que en su proceder directo hacia el análisis de un proceso, el primer paso es la interrupción de dicho proceso. Curiosa,..y ciertamente problemática. Pero centrémonos en la mutación,…..

A lo largo de la historia se ha impuesto la opinión de que la mutación es un proceso "espontáneo", es decir, al azar. Pero debemos, antes de nada, distinguir muy cautelosamente lo que es mutación en la naturaleza de lo que es mutagénesis en el laboratorio. Si someto una población de organismos a un tratamiento de mutagénesis, se nos dice que cualquiera de sus genes tiene la misma probabilidad de resultar alterado que cualquier otro, pero los trabajos en los que este proceso se haya descrito no son frecuentes y puede que no todos los genes sean dianas de un determinado agente mutagénico con la misma probabilidad. Alterando las condiciones, tal vez cambian las probabilidades de que uno u otro gen sean mutados. Por el contrario si que existe abundante bibliografía a propósito de si la mutación es espontánea o adaptativa en bacterias, es decir si la mutación puede o no tener lugar de forma dirigida en respuesta a determinadas condiciones ambientales. Veremos algunos de los experimentos al respecto,…..

miércoles, 5 de diciembre de 2007

El protocolo de la genética y el dogma de la mutación espontánea I


La Genética, la ciencia que estudia la herencia de caracteres, tiene unos orígenes bien establecidos. Se trataba de identificar características para hallar su modo de herencia. Con el tiempo, ha consistido más en obtener mutaciones en determinados procesos biológicos para poder proceder así a su análisis, con lo cual el objetivo inicial (herencia de caracteres) se ha modificado.

Al principio, todo consistía en identificar el modo de herencia de determinados caracteres. Una vez seleccionado el carácter objeto de estudio, el protocolo consiste en realizar cruzamientos para ver su herencia. Sin cruzamientos dirigidos por el experimentador, no hay genética posible. Este fue el método de Mendel que le permitió encontrar que, en el guisante, la herencia de determinados caracteres que él había escogido con buen tino (color de la flor, color y forma de la semilla, altura de la planta,…) se debía a la existencia de unidades puntuales heredables. En los primeros años del siglo XX, el botánico danés Wilhelm Ludwig Johannsen (1857-1927) propuso el nombre de gen para cada una de estas unidades. Avanzando el siglo se demostró su naturaleza química (DNA; Avery, McLeod y McCarthy) y su estructura (la doble hélice; Watson, Crick, Rosalind Franklin).

Una vez elegido un carácter, puede ocurrir que su herencia sea debida a la acción de un gen puntual mostrando en cruzamientos el mismo comportamiento que los modelos desarrollados en las leyes de Mendel (herencia mendeliana) o también puede ocurrir que determinados caracteres se hereden de manera más compleja. Como en humanos no se realizan cruzamientos de laboratorio para estudiar la herencia, se recurre al estudio de genealogías. Se puede ver así que determinadas enfermedades o características morfológicas siguen unos mecanismos en su herencia similares a los descritos por Mendel en sus guisantes. Por ejemplo, la hemofilia (en la figura), una enfermedad, cuyos pacientes presentan una deficiente coagulación sanguínea, se hereda siguiendo mecanismos mendelianos, porque se debe a una variante en un gen que se encuentra en humanos en el cromosoma X. Así, la hemofilia se hereda, ni más ni menos, igual que los caracteres que estudiaba Mendel en guisantes (color y forma de semillas) porque está codificada en unidades (genes) cuyas variantes (alelos) son responsables de que un enzima no funcione correctamente dando lugar a una enfermedad (en el caso de la hemofilia, el enzima alterado interviene en la coagulación de la sangre). En todos y cada uno de los genes, pueden encontrarse variantes que se denominan alelos. Como la mayoría de animales y plantas son diploides (presentan una dotación genética doble, con dos “partes” que proceden de cada uno de los parentales), entonces para cada gen hay dos loci (singular locus). Si en los dos loci se encuentra el mismo alelo, tenemos un homocigoto, si el alelo es distinto, heterocigoto. Cuando los alelos son distintos es posible que haya uno que sea dominante: El fenotipo (carácter) será en ese caso igual que el de su correspondiente homocigoto.

lunes, 3 de diciembre de 2007

El azar: Invitado de honor por primera vez en la Historia de la Ciencia.




Ya hemos visto cómo, según la teoría de de la continuidad del plasma germinal, inventada por August Weismann, la línea somática (el cuerpo humano, por ejemplo) es una especie de excrecencia o apósito, un añadido sin importancia de la linea germinal, que es la fundamental en la evolución (?).

Las mutaciones heredables surgirían así en la línea germinal al azar y, dependiendo de los fenotipos que dichas mutaciones ocasionasen, la selección natural se encargaría de cribar entre los organismos resultantes, aquellos más adecuados. Una vez puesta en marcha una teoría inventada, el neodarwinismo ya no tenía freno. El azar había sido por vez primera en la Historia de la Ciencia invitado, no sólo a tomar parte en una teoría sino a hacerlo de modo permanente, puesto que si las mutaciones son al azar y es imposible la transmisión de información genética concerniente a caracteres adquiridos, el camino estaba trazado para las generaciones venideras.

El azar, que los científicos de todos los tiempos habían intentado acorralar y dejar relegado al último y más insignificante término de sus ecuaciones, surge así en genética como factor-clave y principio fundamental de una teoría y, no sólo ha permanecido durante décadas como tal, sino que se ha difundido por todos los caminos posibles. Por ejemplo, en el libro del filósofo español Jesús Mosterín titulado “Ciencia viva (reflexiones sobre la aventura intelectual de nuestro tiempo) "(2ªed Espasa Calpe 2006) se lee (p 20):

La evolución biológica que nos ha conducido a ser como somos no es una obra de ingeniería intencional, sino el resultado inconsciente de factores aleatorios y fuerzas naturales.


Y todavía más (p 158):

Por eso la teoría darwinista de la evolución es la mejor explicación científica de la asombrosa variedad y adaptación de los seres vivos. Las fuerzas creativas del azar(la mutación de los genes, la recombinación sexual, la deriva genética) fraguan una inmensa variedad de fórmulas o propuestas, que son luego seleccionadas por el filtro implacable de la selección natural.



Y yo,... cuando leo estas cosas, me entran ganas de salir a pasear y a tomar el aire, porque... que somos el resultado de fuerzas naturales no es mucho decir, pero afirmar con una supuesta base científica que somos el resultado inconsciente de factores aleatorios es, aunque esté bien de moda; digo, es llanamente, pisar fuera de los terrenos de la Ciencia. Disparatar. Se atribuyen a Einstein muchas frases pero hay una que es casi seguro que dijo y que viene aquí a cuento:

Dios no juega a los dados.
Cambiemos la palabra Dios por la palabra Naturaleza o Evolución, para darle mayor cabida a la frase. Sigue siendo válida. La Naturaleza no juega a los dados. La evolución tampoco.

¿Qué hubiesen dicho Lavoisier o Gay-Lussac, por ejemplo, si alguien les hubiera sugerido acerca de los procesos químicos o de los gases algo así?:

- Oh! No os preocupeis por buscar las leyes en la Naturaleza, porque la naturaleza se comporta siempre al azar.



Pero intentemos avanzar: ¿Es cierto que las mutaciones son al azar?. ¿Qué pruebas existen en favor de ello?

Responder a esta pregunta todavía en 2007 es algo bien complicado y puede llevarnos tiempo......
La literatura al respecto es abundante y contradictoria. Intentaremos abrirnos paso en su senda; pero,.... antes que nada, exponer una sospecha, que se relaciona con el procedimiento de la Genética, con su estrategia, con su protocolo y con el hecho, que anunciaba en la entrada anterior de que nos falta comprensión acerca de lo que es un experimento en genética. Antes que nada veamos cómo es el protocolo de la genética.

miércoles, 28 de noviembre de 2007

Fantástica pareja



Es un misterio cómo la simple reflexión puede hacer surgir extrañas y curiosas conexiones de alcance inesperado. Mediante este procedimiento mostramos hoy una pareja fantástica en la historia de la genética.

Veamos: ¿tiene algo que ver la teoría que defiende la no-herencia de caracteres adquiridos con el hecho de que la mutación sea aleatoria o dirigida?.

Si denotamos Herencia de Carácteres Adquiridos como HCA y Mutación espontánea como ME, piensen: ¿cuáles de estas combinaciones son más posibles?:


HCA y ME
No HCA y No ME
HCA y No ME
No HCA y ME.


Surgen dos parejas preferentes:

HCA y No ME
No HCA y ME

Mientras que las otras dos combinaciones son desfavorables.

Aunque Lamarck no dijese nada de mutaciones, su postura favorable a HCA se asociaría más con mutación adaptativa (y por tanto No ME, porque la mutación adaptativa o dirigida está más conforme con la herencia de caracteres adquiridos). Por el contrario, la tradición de la genética y algunas de sus figuras ilustres (Weismann, Goldschmidt y todo el neo-darwinismo por ejemplo) han mantenido con tesón posturas en favor de No HCA y ME. Curiosamente, ninguna figura de la genética, que yo sepa, ha mantenido con tesón posturas a favor de HCA (salvo si consideramos algunos "proscritos" de los que hablaremos en otra ocasión, aunque estos hoy no pueden considerarse “figuras”). Si bien el debate en torno a ME o no, es muy abundante y complejo, la ausencia de una postura clara ha de servir para hacernos aquí más preguntas.

A mi entender, la ausencia de una postura clara en genética acerca de si la mutación puede o no ser adaptativa tiene que ver con defectos fundamentales en la comprensión de lo que es un experimento en genética. Explicarlo me llevará tiempo pero hay que darse cuenta de que la experimentación tiene limitaciones muy serias de las cuales el investigador no parece ser siempre consciente. Antes convendrá hacer otras reflexiones.

Blogalaxia: ~ Technorati: ~ AgregaX:

jueves, 22 de noviembre de 2007

August Weismann III: Richard B. Goldschmidt proporciona un apoyo gráfico al doctor Weismann.


Las figuras de arriba están tomadas del libro de Richard B. Goldschmidt titulado "Understanding Heredity. An Introduction to Genetics" (John Wiley and Sons, 1952; pp 52 y 53) y representan la teoría de la continuidad del plasma germinal de manera fiel a como fue concebida por su inventor en el siglo XIX. Al igual que la teoría, la imagen de arriba es ficticia. La de abajo conserva un elemento importante de ficción y para convencerse de ello no hay más que leer la leyenda (The sex cells characterized by the black dots,....pero,.. ¿qué son las black dots?, eso no lo sabemos, no importa).
Tal y como están pintadas las células de la línea somática, destinadas a perecer, sugiere el dibujo de arriba no sólo que los efectos del ambiente en la línea somática (vida de un organismo) no pueden influir en su línea germinal, sino que el origen y las modificaciones de la línea germinal no tienen nada que ver con lo que ocurra en la vida de los organismos.

El libro de Goldschmidt, publicado en 1952, viene así en apoyo de Weismann y del dogma de la no-herencia de caracteres adquiridos y contribuye a sentar la base teórica (más bien dogmática) del neo-darwinismo sin base experimental alguna.
El texto que acompaña a estas ilustraciones es ambiguo, dogmático y poco informativo. Copio y traduzco un fragmento como muestra:
Weismann made few experiments to disprove Lamarck's hypothesis. True, he cut off the tails of some mice for a few generations but got no tailless offspring and while he gives no exact measurements with coefficients of error he did not observe that the tails of the descendants had shortened one whit. The combs of fighting cocks and the tails of certain breeds of sheep have been cropped for many generations and the practice continues today, because their tails are still long. While in Lamarck's time there was no evidence opposed to his ingenious theory, based as it was on an appeal to the acknowledged facts of improvement that take place in the organs of an individual through their own functioning (a fact that is as obvious and remarkable today as in the time of Lamarck), yet now there is evidence as to whether the effects of use and disuse are inherited, and this evidence is not in accord with Lamarck's doctrine.
Weismann hizo algunos pocos experimentos para refutar la hipótesis de Lamarck. Por ejemplo, cortó las colas de algunos ratones durante algunas generaciones pero no consiguió ningún descendiente sin cola y mientras que no da ninguna medida exacta con coeficientes del error, él no observó que las colas de los descendientes hubieran acortado un ápice. Los crestas de gallos de pelea y las colas de ciertas castas de ovejas se han seleccionado durante muchas generaciones y la práctica continúa hoy. Mientras que en el tiempo de Lamarck no había evidencia opuesta a su ingeniosa teoría , basada como estaba en una observación lógica de los hechos reconocidos de la mejora que ocurren en los órganos de un individuo con su propio funcionamiento (un hecho que es tan obvio y hoy notable como en la época de Lamarck), todavía hay evidencia de si los efectos del uso y del desuso están heredados y esta evidencia no está de acuerdo con la doctrina de Lamarck.

Pero nos quedamos sin saber cual es esa evidencia,.........

Por otra parte no olvidemos que por su contribución, Weismann fue premiado en 1904 con la denominación de Presidente Honorario de la Sociedad para la Higiene Racial (Society for Racial Higiene).



martes, 20 de noviembre de 2007

August Weismann II: Los experimentos del doctor Weismann.



Los experimentos de Weismann no eran mejores que su teoría. En su serie de experimentos más conocida, el doctor Weismann (o, tal vez, algún ayudante subordinado), cortó la cola a ratones durante veintidós generaciones consecutivas para probar que los caracteres adquiridos no se heredan.

A estos experimentos realizados por uno de los pilares del neodarwinismo, de momento, no los he querido adjetivar. Se me ocurre que además de no conducir a ninguna parte, son buena prueba de sadismo y de estupidez, pero estos y otros adjetivos no los llenan, no llegan a describirlos en toda su maldad. Son ejemplo de perversión en la Ciencia. Pervertir es, en español, viciar con malas doctrinas o ejemplos las costumbres, la fe, el gusto, etc. Y malas doctrinas y ejemplos son los experimentos de Weismann. En Ciencia uno no puede inventar, no puede plantear hipótesis sin base a ninguna observación; no puede diseñar experimentos a lo bestia.

Por su contribución, Weismann fue premiado en 1904 con la denominación de Presidente Honorario de la Sociedad para la Higiene Racial (Society for Racial Higiene).


Blogalaxia: ~ Technorati: ~ AgregaX:

martes, 13 de noviembre de 2007

Caracteres adquiridos: Descanso del libro de Morgan con una puntualización lingüística.



Decíamos que tanto la expresión “Selección Natural”, como “carácter adquirido”, merecen una reflexión y deben ser utilizadas con cautela. Tal vez su aproximación requiera el uso de uno de estos antifaces que muestra la imagen y que los apicultores utilizan en su aproximación a la colmena. Puesto que acerca de Selección Natural ya he dedicado algún tiempito (por lo visto todavía no el suficiente) en otra ocasión, vayamos ahora, antes de entrar en consideraciones históricas a ver qué significa carácter adquirido en la tradición de la Genética y de la Biología. Curiosamente, en el contexto de la Genética (al contrario de lo que ocurre en el lenguaje ordinario) carácter adquirido no significa carácter adquirido sin más, sino más bien adquirido a lo largo de, (o como consecuencia de) la experiencia de la vida.

Me explico: Adquirir algo, en el lenguaje común significa pasar de no tenerlo a tenerlo y nadie te pregunta cómo ni porqué. Sin embargo, en el lenguaje de la Genética, adquirido significa adquirido durante tu vida independiente (?); es decir, entre el día de tu nacimiento y el de tu muerte. Es curioso y resulta difícil de entender, pero es así. Para la Genética, mi mano izquierda no es algo que yo haya adquirido, sin embargo si yo soy guitarrista y mi mano toma determinada proporción o habilidad como consecuencia del hábito, esa proporción sí que será adquirida. Sólo entendiendo esta peculiar y muy discutible manera de interpretar una palabra se encuentra uno en disposición de hablar de la herencia de caracteres adquiridos.

Si el carácter fuese adquirido como consecuencia de una mutación al azar en las células germinales de uno de los parentales, entonces la Genética considera que no es adquirido. Supongamos por ejemplo el caso de la talidomida, un fármaco utilizado como calmante en el embarazo durante los años -50 y -60 cuya utilización provocó graves deformaciones en los embriones que se mantuvieron en los individuos al nacer (dismelia: defectos en los miembros). Pues bien, estas anomalías, para la Genética no eran adquiridas, sino congénitas. Sólo si el carácter es adquirido como consecuencia de la experiencia, de la práctica, del uso, de la necesidad a lo largo de la vida del individuo, entonces es adquirido para la Genética y,…según la versión vigente de la teoría (¿dogma?), entonces no podría ser heredado a las generaciones sucesivas. Si por el contrario, se adquiere por azar (?) en la línea germinal, no es adquirido y puede ser heredado. Es un curioso razonamiento mediante el cual se da un paso, consciente o inconscientemente, para mantener al azar en un puesto clave dentro de la evolución (darwinismo), mientras que algo aparentemente tan intuitivo y natural como la posibilidad de cambios en el genoma en respuesta al ambiente, queda reducido al máximo, casi excluido.

En conclusión, algo así como si por decreto, se hubiese venido a dictaminar que los caracteres adquiridos no se heredan. De paso, se atribuyó a Lamarck, como un sambenito (cuando Darwin lo admitió sin inconveniente) el haber defendido algo que estaba muy mal visto y haberlo ilustrado con un ejemplo que tambien hoy suena a rancio (el del cuello de la jirafa). Para entender cómo este curioso razonamiento se ha mantenido vigente durante décadas hay que tener una perspectiva histórica y el libro de Morgan que veníamos comentando nos la proporciona. Volvamos pues, con Morgan.


Blogalaxia: ~ Technorati: ~ AgregaX:

lunes, 12 de noviembre de 2007

La Relación entre Genética y Evolución: Thomas Hunt Morgan (III; en el avispero).




En el texto que venimos comentando y que se titula "A Critique of the Theory of Evolution" (1919), Thomas Hunt Morgan parece mostrar cierta simpatía con la herencia de caracteres adquiridos, un tema muy delicado e importante en la Historia de la Biología, un auténtico avispero para la Genética.

Salvando la diferencia que pueda haber entre nido de avispas o de abejas, ilustra la entrada de hoy el cuadro de Piero di Cosimo (1462-1521), titulado El Descubrimiento de la Miel, en el que una serie de personajes exponen su desnudez a la feroz picadura de estos insectos.

Dice en su libro Morgan:

Practice makes perfect is a familiar adage.
Not only in human affairs do we find that a part through use becomes a better tool for performing its task, and through disuse degenerates; but in the field of animal behaviour we find that many of the most essential types of behavior have been learned through repeated associations formed by contact with the outside.

It was not so long ago that we were taught that the instincts of animals are the inherited experience of their ancestors lapsed intelligence was the current phrase.

Un adagio familiar dice que la práctica hace la perfección.
No solamente en asuntos humanos encontramos que una parte, con el uso, se convierte en una herramienta mejor para realizar su tarea, y sin uso degenera; en el campo del comportamiento animal encontramos que muchos de los tipos más esenciales de comportamiento se han aprendido con las asociaciones repetidas formadas por el contacto con el exterior.

No está tan lejos en el tiempo cuando nos enseñaron que los instintos de animales son la experiencia heredada de la limitada inteligencia de sus antepasados.


Y,… más adelante:


Lamarck's name is always associated with the application of the theory of the inheritance of acquired characters. Darwin fully endorsed this view and made use of it as an explanation in all of his writings about animals.
Today the theory has few followers amongst trained investigators, but it still has a popular vogue that is widespread and vociferous.



El nombre de Lamarck se asocia siempre al uso de la teoría de la herencia de caracteres adquiridos. Darwin aceptó completamente esta visión y la usó como explicación en sus textos sobre animales. La teoría tiene hoy pocos seguidores entre los investigadores, pero todavía tiene una aceptación popular extensa.


La Teoría, tal y como se ha interpretado tradicionalmente en Genética, sería definida propiamente como la no-herencia de los caracteres adquiridos. Pero........
¿Acaso no suena un poco extraño una teoría cuyo enunciado es la negación de una generalidad?.
Creo que a Karl Popper, uno de nuestros teóricos de la Ciencia, no le hubiese gustado nada este enunciado y tal vez habría dicho: Aunque usted demuestre que determinados caracteres adquiridos no se heredan, no podrá convencerme de que ninguno se hereda. ¿Como se puede demostrar semejante cosa?. En todo caso, podríamos demostrar que determinada característica adquirida no es heredable. Pero,… no es mucho generalizar dictaminar que ninguna característica adquirida es heredable?. ¿En qué se basa toda la leyenda acerca de la herencia de caracteres adquiridos?, ¿en Ciencia Experimental bien diseñada y ejecutada?. ¿ O, tal vez, por el contrario en imposición de criterios y puntos de vista desde posiciones privilegiadas de la Ciencia?. Demos el salto y abordemos el análisis histórico, pero no sin advertir antes que la expresión "carácter adquirido" es un verdadero avispero. Junto con la expresión "Selección Natural", ambas deben ser aproximadas con cautela.

martes, 30 de octubre de 2007

La Genética, contemporánea del Titanic



La Genética suelta amarras a primeros del siglo XX y parte en su singladura de unos principios sólidos: Los seres vivos tienen, al menos en ocasiones, el significado que uno quiera darles. Su carácter es el conjunto de características. Las características se heredan. Hay que realizar cruzamientos para ver cómo. Pero tal solidez de sus planteamientos, implica una herida mortal.

No estamos ante un caso único en su época. Otros proyectos se fundamentaban en sólidos principios, pero fallaron por no haber considerado debilidades inesperadas. Empresas gigantes, basadas en la confianza del hombre en su propia capacidad y destinadas a la lucha con los elementos: Con el Mar, El Titánic; con el mar del lenguaje, La Genética.

Pero la fuerza que motiva ambos proyectos incluye, según el principio oriental del Yin y el Yang, una profunda debilidad que hace difícil que sus travesías ocurran sin riesgos o accidentes.
La Genética abstrae los caracteres, pero el significado de los seres vivos pudiera no ser ese, sino otro. Ni sabemos cuál ni tan siquiera estamos seguros de que haya otro, pero el problema surge si cabe tan solo la posibilidad de que los seres vivos tuviesen otro significado que, precisamente podría perderse por ignorarlo.

Si se aislan los caracteres, podríamos incurrir en dificultades graves, por ejemplo para obtener una explicación de la variabilidad. En un artículo publicado en The American Naturalist en 1924, Oscar Riddle reconocía perfectamente esta realidad:

“These divisions or aspects of biological science—comparative anatomy, systematics, biochemistry, paleontology, behavior, embryology, evolution, pathology, ecology, microanatomy, physiology and distribution—are at once frank recognitions of the kinds of knowledge necessary to a comprehension of the organism, and of the limited scope and value of any single type of information. Heredity, or evolution, like Biology as a whole, possesses an integrity which upon examination immediately dissolves into diversity. It is a crystal of many facies. The first purpose here is to attempt the identification of the radically diverse aspects presented by any single hereditary character….”

Es decir, al analizar cualquier carácter tendremos detrás toda la Biología del organismo y siempre volveremos al punto de partida. Si preguntamos por la parte no podremos nunca tener una respuesta que explique el todo.